Wide Aperture D-magnets @Extraction for PIP-II: MADX simulation of Existing Extraction Trajectory

Valery Kapin

30-Jul-2020, Taskforce/PSP meeting (via ZOOM)

Acknowledgments

(for problem formulation, information, discussions & assistance, patience, etc.)

C.Bhat, S.Chaurize, D.Johnson, W.Pellico, D.Hurd, J.Eldred, J.Kuharik, K.Seiya, J.Lackey, C.Y.Tan, K.Triplett

Booster & Extraction Layout

D-magnets at Extraction Region in Long 3

To preserve symmetry another D magnet must be located at downstream Long 3, while external height of D magnet is restricted by 2.5deg-curve

Septum: BSE104-0; Drawing No. ME-412051; Alignment 5/22/2008

Previous talk in Dec-2019 (BD-7875)

V.K. "Requirements for a New D-magnet derived from MADX simulations"

New D-magnets in Booster extraction area – near Long Straight Section L03.

Multi-particle simulations with MADX @ 8 GeV, 95%-Enorm = 16 pi*mm*mrad.

Assumption – vert. position of circulating beam before extraction Y=0 (on axis).

Simulations results suggest significant beam losses on the upstream F-magnet.

Motivation of the present study -> evaluation of orbits:

- 1) at the last full turn (w/o kickers) and
- 2) extraction trajectory (kickers=on)
 - => Feed multi-particle simulations of losses to verify aperture requirements & need for F-magnet

<u>Conditions:</u> no fresh survey, no reliable assembly drawing, no design & simulation data/results for present configuration; only some old non-systematic info&reports and guesses about loss location (via BLMs).

<u>D.Johnson</u>. High-losses by BLM at D exit; several new magnets: BGMD; BGMF; BGDS; <u>BGDW (extract. a-?; L=?) – this study</u>

Info & conclusions in previous talk (BD-7875)

"Requirements for a New D-magnet derived from MADX simulations"

- Collected info available for Extraction region in Booster Long 3 (photo on servers; visit in Boo tunnel; previous meeting docs on new D-magnets, discussions with people involved, review Rookie books and old publications, finding available drawings and take detail sizes)
- Derived necessary geometrical (septum & magnets boundaries) and operational parameters (e.g. kicker voltage, vertical shift, etc.)
- Analyzed the Ejection System in 1968 Design report: additional kick between F-magnets; larger 24"x16" magnets was designed with full gaps – 2.5"(D), 2.0"(F) – with published specs (!) (+drawings ?)
- Conditions and tasks for MADX simulations with PIP-II emittances
- Dependences for Losses vs increase of magnet gaps presented: losses distributed on D-magnet and the exit of F-magnet. To remove losses new D & F magnets with >5mm increased ½-gaps are needed

New D-magnet – tasks & info in old docs

W.Pellico, "Boo D magnet for PIP 2 ..." BD-5942-v2, 2017:

New Vertical Aperture > present magnets (VK: 2.25"). A working specification - the new *gradient magnet will be between 2.5" and 3"*.

K.Seiya in BD-5936-v2, 2017: => Short D magnets: Preserve symmetry

C.Bhat, BD-7088-v2, March, 2019:

- ➤ F.R. for three wide aperture D-magnets at 8 GeV extraction (installation of the two D-magnets). This upgrade is to reduce losses at extraction.
- ➤ Currently (PIP@15Hz), radiation level @extraction ~600 mR@1ft from scraping of *transverse beam tail* passing through the D-magnets.
- ➤ Losses will go up ~33% for PIP-II@20Hz). New D-magnet (2.25"-> 3")
- => beam loss can be reduced by ~ 33%.

1968 Ejection & existing apertures (18x13magn)

Extraction Trajectories must be similar "1968" (?):

- Bump move circulating beam close to septum
- Now Dipoles in CPS02 (max ~0.5mrad) could be used as Bump (avoid F magnets?)

Conclusion: Most of losses -> on D-magnet; Some losses -> the exit of F-magnet

Booster uses 18"x13"magnets: $G_{E}=1.64$ "; $G_D = 2.25$ " (instead of 1968 design 24"x16")

Example of Trajectories (CPS02=on&up; BD-7875)

Assumption: the circulating beam is placed exactly on the Booster axis !!!

Five kickers at 8%-reduced PFN voltage $V_{PFN} = 0.92 \times 48kV$

Very similar to curves in 1968 Design report

y(sept)=23.5mm

Collected Data (from Plots before Shutdown)

Salah plots "Charge, BEXn, Losses"=> scales: BEX2=BEX4=1.2; BEX3=094; Bex4=1.2 BEX ~ similar CP, but no calibration "angle=f(I, A)"

Approximate Y on BPMs from plot (100 turns before extraction – exclude "BPM artifacts" (?))

BPM name	100 turns before	
	extraction \$1D	
B:VST24S	+2.6 mm	
B:VST01L	+1.0 mm	
B:VST01S	-0.4 mm	
B:VST02L	-(5.0÷5.3) mm	
B:VST02S	-6.7 mm	
B:VSTU3L y _{SeptaUS}	≈-4.5 mm; -4.2	
B:VST03L y _{SeptaDS}	≈-9.4 mm ; -9.8	
		. ,
B:VST03S		Ka

MADX (last turn): BEX(1.2&0.94)=on; CP=off

MADX: BEX(1.2&0.94) + match all BPMs

MADX: BEX + match @ Y(LU3,L03)->I (S02,L03)

Use more systematic Data (B38 2-MAr2020)

Jeff Eldred e-mail: If you just want to work with data without pings, there are some choices:

https://www-bd.fnal.gov/userb/booster/turnbyturn/turnbyturndata/TBT Mar2 HEP NoPing 6t 1.txt

NUMBER OF TURNS 20000 BEGIN TURN: 1 CYCLE: 17 MICROTIMESTAMP: 03/02/20 15:45:29

Jun18 2019 https://www-bd.fnal.gov/userb/booster/turnbyturn/turnbyturndata/TBT Jun18 HEP Nping 6t.txt NUMBER OF TURNS 20000 BEGIN TURN: 1 CYCLE: 17 MICROTIMESTAMP: 06/18/19 16:35:27

Mar18 2019 https://www-bd.fnal.gov/userb/booster/turnbyturn/turnbyturndata/TBT_Mar18_noping_HEP_4t.txt NUMBER OF TURNS 20000 BEGIN TURN: 1 CYCLE: 17 MICROTIMESTAMP: 03/18/19 10:14:35

2-Mar-2020 = OK!

BAD "18Mar2019.txt" ("-33mm", "1000mm", etc) for 056 VSTU3L.dat" upstream SEPTUM

Digitizing Salah plot "Charge, BEXn, Losses"=> Tstart=1.9ms; Tend=35.5ms

Table Data from B38 calculator

Time,ms	~2.0	~2.002	=32.0	=33.0	=34.0	~34.96
Turn #	=0	=1	~17,640	~18,269	~18,898	=19,500
Time,ms	=35.0	~35.43	~35.51	~35,59	~35.67	~20,150
Turn #	~19,526	=19,800	=19,850	=19,900	=19,950	=36.0

Booster dipole correctors use **eight breakpoints** $t_{\rm BP}[0]=$ "2 ms" (=2.4 ms exactly), $t_{\rm BP}[1]=3$ ms, $t_{\rm BP}[2]=6 \text{ ms}, t_{\rm BP}[3]=10 \text{ ms}, t_{\rm BP}[4]=20 \text{ ms}, t_{\rm BP}[5]=32 \text{ ms}, t_{\rm BP}[6]=36 \text{ ms}, t_{\rm BP}[7]=60 \text{ ms}.$ V.Kapin, New Dmagnet, Jul-2020

"Strange" bump @last 100 turns

IPM in L04 (\$17,\$15,\$1D) – blue curve

Example: linear extrap. of aver. to last turn:

Last turn extraction BPMLU3: 25 mm

MADX (last turn): BEX(1.2&0.94)=on; CP=off

MADX: BEX + match @ w/o BPML03

MADX: BEX + match @ w/o BPMS03

Calibration "Kick-angle=f(lamps)" around Booster

Y[m]

— Y [m] meas@19950#Extrapol#2Mar20

2-Mar-2020 B38 data

0.012

Y [m]

It looks to be not suitable For Global matching around Booster BPMs (errors accumulated)

It could provide some Guess-values and should be considered For local matching in restricted area

Further exploring on Other areas could be checked (e.g. collimators)

Conclusion

- MADX simulations shows that the last turn extraction orbit is quite different from 1968-report and from our previous simulation Y=0 (BD-7875).
- The last turn orbit near Septum is probably located under Booster axis in the range [-3;-13] mm.
- Use of kick-angles derived from CP's I,amps instead of Y-cords (BPM measured) for CP-kickers near septa (via CP calibrations) suggests the last turn orbit to be equal ~-9mm
- Probably, it may lead to reduction of large beam losses on Fmagnet reported in our previous report. It will be tested with further MADX multi-particle simulations
- Usage of CP currents instead of measured BPM's Ycoordinates might be used locally in some restricted areas for MADX-matching

Supporting slides

Task setup: Septum & D-magnet cross-sections

Specification for new D & F magnets BD-7875

Assuming the placement of the circulating beam exactly on the Booster axis, MADX simulations lead to the following results for new D & F magnets:

- To exclude losses on D & F magnets located upstream of the septum, the new D & F magnets with at least 5 mm increased half-gaps (or +10mm full-gaps) are needed
- Curves for beam losses vs half-gaps could be used if magnets with smaller gaps will be designed.
- The already established "safety gaps" ~2mm; their increase will lead to a corresponding increase of full gaps
- External height of D magnet is restricted by 2.5deg-curve formed by the extraction pipe. => D magnet with increased height must be shorter. Its length is limited by the relation:

 $L_{\text{new}} \le L_{\text{old}}$ - $(h_{\text{new}} - H_{\text{old}})/\text{tg}(\alpha)$, where $\alpha = 2.5 \text{deg} \sim 0.044$, l and L are the D-magnet length, h and H are the external D-magnet heights.

Example. Old H=13" -> new h=16" => old L=3m -> new 1.3m - too short!

Extraction parameters found in References

1973: Hubbard report.

- ■Vertical apertures: G_F =1.64"[41.7mm]; G_D =2.25"[57.15mm];
- Betatron phase shift $\Delta \phi_{\text{[kicker-center; septum-lip]}} \sim 93 deg;$
- ■1.1mrad (0.063deg) kick produces δ*y*=23mm @septum;
- ■Fast kicker consists of 4 sections; V_{Pulse-line}(max)~ 75kV;
- FIGURE C-2

 MAGNET CROSS SECTION DIMENSIONS (INCH)
- Septum (old "circle" design) deflects beam vertically 44mrad [2.52deg];
- ■Septum -15mm above center; gap=1.1"x1.1"; thickness ("Cu+Fe")~ 0.09"[2.3mm]

1977: Cosgrove PAC-report.

- •A new (Septum) magnet...operated well over 18 month;
- Septum is 60" long; the magnet gap=1.1"x1.5";
- Septum deflects beam vertically 44mrad [2.52deg];

1979: Brown PAC-report.

- •tune v_{vert} ~6.8 @ periodicity 24, $\Delta \phi_{\text{cell}}$ ~0.283 (2 π) [~101.88°]
- •L3 is 15 cells away from L12: $\Delta \phi_{cell} \sim 4.25 \ (2\pi) \ [\sim 90^{\circ}] =>$ maximum displacement is from the kicker in L12
- •(Septum)... the present 44 mr (2.52deg) angle. V.Kapin, New Dmagnet, Jul-2020

Extraction parameters found in References

1993 & 2004: Boo Rokie book.

- ■At nominal voltage 4 kickers produce a bend angle of a bit >1 milliradian (RB-2004);
- ■the orbit of circulating beam is located ~10 mm below the septa plate (RB-2004);
- ■to kick the beam into center of septum field, we need ~30 mm vertical displacement;
- ■Booster extraction kickers have voltages that run in the 55÷60 kV range;
- ■The septa plate lies close to the vertical centerline (approximately 10 mm above).

2004: Boo Rokie Book.

- •There are four kickers at long 2; They displaces the beam upward about 25 mm before the beam reaches the septum at the next long straight section
- •Septum -> 44mrad [2.52deg]

1995: Lackey note. Assuming a septum thickness of 5 mm

2009: Boo Rokie book. It repeats the above parameters from RB-1993&2004

2002 New Septum MP02 Requirements. Good field region: 1" square beginning

0.04"[~1mm] from septum conductor

V.Kapin, New Dmagnet, Jul-2020

Photo BSE magnets at TD

https://www-tdserver1.fnal.gov/Project/ProEng/MagnetPhotos/pics.asp?qsPath=BSE

It looks that five 5 septum with No "BSE102 - BSE106" correspond to Drawing No. ME-412051

The presently used BSE104 has only two photos dated 5-Jan-2004 while BSE106 has photo dated by 20040324

Many photo (dated by 16/July/2002) of the particular BSE102 (already used in Booster operations and now stored in the Boo tunnel)

Example. Taking sizes from drawing

L03 Assembly ~2008 by J.Lackey

